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Abstract 

 
The paper presents a methodology of improving the efficiency of the steelmaking process based on computational in-

telligence solutions. To make fine adjustments to the steel composition alloy additions are added to the crude steel to ad-

just composition for the grade of steel being manufactured. The prediction of metal bath composition is a crucial factor in 

the economy of ladle furnace operation. Usually it is made by calculations based on the equilibrium of chemical reactions 

in molten steel. The paper presents the problem solution based on the prediction system build upon the committee of Arti-

ficial Neural Networks, the Support Vector Regression and Multivariate Linear Regression Model. A brief state of the art 

review of the application of computational intelligence (CI) in secondary steelmaking has been made. The prediction sys-

tem used by authors has been introduced. Problems with data preparation have been presented. Experimental results and 

the final conclusions and recommendations have been presented. The solutions was implemented in one of the steelworks, 

where it allowed to improve the economy of the secondary steelmaking process. 
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1.   INTRODUCTION 
 

The refining of steel (secondary steelmaking) 

has become an important part in modern steelworks, 

which ensures the production of steel of the required 

properties and the success of continuous casting. 

Ladle Heating Furnaces (LHF’s) are used for steel 

temperature control, steel deoxidation, reduction of 

sulfur, alloy additions, inclusion floatation and 

modification. LHF can also be used as a holding unit 

if delays occur during production (Engh, 1992). 

External heat is provided to the ladle to compensate 

for its loss, by the electric arc. Stirring the steel in 

the ladle by inert gas increases the reaction between 

the metal and slag. Stirring also provides the benefit 

of temperature uniformity throughout the ladle of 

 
 
 

 
steel. The steel refining processes performed in the 

LHF have now become widely adopted, and their 

various combinations can satisfy specific needs of a 

given steelmaker. 

A typical process has the following stages 

(Ghosh, 2001):  
– Tapping - begins when the heat (batch of steel) is 

tapped from the Electric Arc Furnace (EAF) into 

the ladle. The main functions at tapping are: o 

Separation of highly oxidized slag from the   
steel.  

o Alloys additions to modify steel composi-

tion towards that required for the product.   
o Deoxidant addition to control the level of 

oxidation.  
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o The main parameters to be controlled at this 

stage are the amount of C, Mn, P and Si in 

the steel, Fe contained in slag and steel 

temperature.  

– Flushing - improves homogenization of steel 

temperature and composition through the stir-

ring effect of the gas (Ar) injected close to the 

bottom of the ladle via a submerged refractory 

coated lance or a porous plug in the ladle bot-

tom.   
– Other operations may take place, such as addition 

of alloys or aluminum wire feeding to trim 

closer to the required composition. Synthetic 

slag can be added for metallurgical treatments 

such as desulphurization.   
– Reheating at a ladle arc furnace - allows a number 

of treatments to be carried out:  

o Increase  temperature  to  that  required  for   
casting – by means of electrical energy.  

o Composition trimming - by alloy additions 

or wire feeding.  
o Slag composition adjustment with mineral 

additions to give the desired metallurgical 

effect.  
o Deep injection of powdered reagents for 

desulphurization.  
o Reheating provides a process ‘buffer’ by 

maintaining steel temperature in case of 

production delay.  
To make fine adjustments to the steel composi-

tion alloy additions are added to the crude steel to 

adjust composition for the grade of steel being 

manufactured. The prediction of metal bath compo-

sition is a crucial factor in the economy of ladle fur-

nace operation. Usually it is made by calculations 

based on the equilibrium of chemical reactions in 

molten steel. The measurement of the compositions 

requires spectrographic techniques which are per-

formed on line. In the present paper a computational 

intelligence (neural network and SVM) based mod-

els have been developed for that purpose. They pre-

dict the output variables (quantities of alloy addi-

tions) with given a set of up to 33 process (input) 

variables (the actual chemical composition of the 

steel and the desired composition). The input vari-

ables include mass of the steel bath, temperature and 

the quantity of different chemical elements in the 

steel (C, Si, Mn, P, Al, S, etc. thought not always all 

the input variables are used). The process variables 

are measured on-line and hence the intelligent sys-

tem can be used on-line to predict the output pa-

rameters. 
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In our system the problem of prediction of alloy 

additions has been approached using a committee of 

Multilayer Perceptron Neural Network (MLP), 

Support Vector Regression (SVR) and Multivariate 

Linear Regression (MLR) methods. The paper is 

organized as follows: section 2 describes a brief state 

of the art review of the application of computational 

intelligence (CI) in secondary steelmaking, section 3 

introduces the system used by us. In section 4 we 

present the data preprocessing issues. Section 5 

introduces the detail of the MLP prediction. Sections 

6 and 7 introduce the other approaches to the 

prediction problem, i.e. SVR and MLR. Section 8 

presents experimental results. Section 9 contains the 

final conclusions and recommendations. 
 
2. APPLICATION OF 

COMPUTATIONAL INTELLIGENCE 

IN SECONDARY STEELMAKING  
 

A survey made by (Wong et al., 2000) presented 

a comprehensive bibliography of neural network 

application research in business (there are some 

other comprehensive reviews presented in the litera-

ture, e.g. (Bhadeshia, 1999; Jams, 2001; Meireles et 

al., 2003), but not such detailed), in the area of steel 

plant's real-time process control had identified 250 

research articles. Among them papers considering 

the LHF process are not too many. The main prob-

lems discussed in the literature are: experimental 

modeling of the steelmaking process, electrode lift 

control system, stirring by inert gas control system, 

ladle control system and supervisory control for 

assisting the operator in making a deci-sion about 

how successfully a batch of steel has been made.  
Electrode lift control system is the important 

component of the ladle furnace system, and its work-

ing efficiency has direct effect on the yield, quality 

of the steel and energy consumption. The position of 

the electrode, the current and the voltage of the elec-

tric arc have strong coupling relationships. It is diffi-

cult to build exact mathematic models by using the 

conventional methods of electrical equivalent cir-

cuits (Wieczorek, 2006). Almost all the conven-

tional ladle electrode lift control systems adopt the 

PID control strategy, and often utilize the field ex-

perience to set the parameter of the controller (Sie-

mens, 2005). Therefore, the current of the electric 

arc fluctuates greatly and thus has bad effects on the 

quality of the molten steel refining (Li et al., 2004). 

A lot of research has been done aiming at the 

electrode lift control problem. Intelligent complex 

con
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trol basing on fuzzy control and the adaptive elec-

trode control algorithms by using the feedforward 

control have been proposed by (Li et al., 2004). 

W.E. Staib proposed to utilize the neural network to 

control the electrode, this can learn online during the 

smelt process (Staib, 1993). In China, as well, an 

intelligent ladle control system has been developed. 

Combined AI technologies were used for ladle fur-

nace heat balance calculation and steel temperature 

prediction, dynamic energy input optimization and 

intelligent electrode control. Satisfactory application 

results have been obtained (Sun et al., 2000).  
Stirring the steel bath in the ladle by the flow of 

an inert gas (usually Ar) improves the steel refining 

process. Important is the flow rate of Ar, dimension 

of gas bubbles, stirring time and temperature. Li et 

al. (1997) have presented a method of control of the 

optimal flow rate of Ar. Using fuzzy controller inte-

grated with the feedforward ANN a cascade control 

system is realized. The controller can keep the flow 

of Ar at the optimal point during the whole refining 

period. Peter et. al. (2005) have investigated the 

mass transfer rate caused by Ar stirring during ladle 

refining. Process was quantified by taking sequential 

steel and slag samples during the treatment of 20 

heats. Each heat was stirred with a different argon 

flow rate. Heats were treated at two different plants. 

Mass transfer rate constants were determined for 

each heat by using process simulation and thermo-

dynamic models. Relationships between mass trans-

fer rate constants and stirring powers as well as ladle 

geometries were compared between the two plants. 

It was found that the reaction kinetics during ladle 

refining depend on the bulk transport of the steel to 

the slag/steel interface and on the thermodynamic 

equilibrium at the slag/steel interface.  
In order to assist the operator in making a deci-

sion about how successfully a batch of steel has been 

made, some systems basing on fuzzy logic and neu-

ral networks have been developed (Roy et al., 1999; 

Van Gorp, 1999). They are aiming to assess the 

quality of the steel production using key processing 

parameters as inputs and performance parameters as 

outputs. Roy et al. (1999) have described the secon-

dary steelmaking process and the methodology fol-

lowed to develop the fuzzy model for process auto-

mation. Most steel industry processes are already 

controlled using proportional integral and derivative 

controllers. These systems are able to cope with 

many of the possible production situations but there 

are some extreme cases where many phenomena, 

which may be only partially or fully understood, are 
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likely to disturb the production conditions. In these 

instances, fuzzy logic controllers can give a faster 

reaction to disturbance. An example is development 

of a shape control system combining neural net-

works and fuzzy logic. A back propagation neural 

network performs pattern recognition and a fuzzy 

control model calculates required changes to control 

parameters to retrieve a perfect shape. Roy et al. 

(1999) have developed an approach to utilize both 

data analysis and expert knowledge to define the 

membership functions and the rules.  
An application of decision tree method for con-

structing rules for managing the secondary steelmak-

ing process has been proposed. The C4.5 algorithm 

has been used (Wieczorek et al., 2007) and the 

CART algorithm has been used (Wieczorek & 

Świtala, 2008). Basing on the decision trees some 

set of rules describing the electric-arc process has 

been constructed. The proposed algorithms can be 

considered as a general method for knowledge ex-

traction. Recently, in the world, some intelligent 

expert systems for control and monitoring of the 

process are proposed. One of them has been imple-

mented and applied in real industrial process by the 

research team from the Silesian University of Tech-

nology, managed by the author (Wieczorek et al., 

2008; Wieczorek & Pilarczyk, 2008). 
 
3.   THE PREDICTION SYSTEM 
 

The purpose of the prediction system is based on 

the measured data of the LHF process (chemical 

compositions, temperature, etc.) to predict how 

much of particular additions should be added to the 

process. That is done in several steps. First the sys-

tem predicts the quantity of elements to be added 

and then based on the economic factors and avail-

ability of particular additions that contains the re-

quired elements, the quantities of particular addi-

tions are calculated. 

After the feature selection and data preprocess-

ing (which is described in the next section), the data 

is provided to the core of the prediction system, 

which consists of MLP, SVR and MLR methods 

(figure 1). A separate system is built to predict each 

element in each grade of steel. However, sometimes 

it happened that there is not enough data (there were 

too few LHF processes in the past) for a given grade 

of steel to build the prediction model. Thus, the 

rarely produced sorts of steel are joined together and 

then using k-means weighted clustering (weights 

proportional to the input-output correlation on the 

whole 
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data Euclidean distance is used) they are grouped 

into bigger datasets comprising the data of the pro-

duction of similar steel grades, for which the regres-

sion models are built. If it happens that the predic-

tion results for a given cluster are worse than for a 

whole dataset, then the model built for the whole 

dataset (for all rarely produced grades of steel) is 

used instead of a given cluster model.  

 
As the experiments showed, a committee of 

three different methods (MLP, SVR, MLR) usually 

produced more accurate results than any single 

method. For that reason the three methods are used 

and a final predicted value is calculated as a 

weighted average from the three methods, with 

higher weights given to this method which per-

formed better in the crossvalidation test. The meas-

ure of the method quality we used was the correla-

tion on the test part of the set in the crossvalidation 

between the predicted value and the observed value. 
 

WM    corrM
3
 WS    corrS

3
 WR    corrR

3
 (1) 

W  1  max(WM  ,WS ,WR ) WM   WS   WR (2) 

X   ( X avg (1  max(WM  ,WS ,WR ))   

WM  X M   WS  X S   WR X R ) / W (3)  
where corrM, corrS, corrR are the correlations be-

tween the actual value and the values predicted by 

MLP, SVR and MLR method respectively, X is the 

final value predicted by the model, XM, XS, XR are 

the values predicted by the MLP, SVR and MLR 

model respectively, Xavg is the average value of that 

ele-ment added to the LHF process across all the 

previ-ous cycles.  
After the quantities of particular elements are 

predicted, the quantities of the additives have to be 

calculated by solving a system of linear equations 

(each additive contains usually two or three ele-

ments). If the equation system can be solved in sev- 

 
eral ways (what is frequently the case), the most 

economic solution (with the lowest total costs of the 

additives) is selected.  
The system has been implemented at one of the 

Polish steelwork as a web application in .NET tech-

nology and it uses the optimal parameters obtained 

while performing the experiments. The experiments 

with SVR were performed in Statistica, then the op-  
timal SVR parameters were de-

termined. The experiments with 

MLP were performed with our 

own software written in Delphi 

and the optimal MLP weights 

and structure were found. The 

linear regression parameters also 

were determined with Statistica. 
 
4.   DATA PREPARATION 
 

In the real system we use 

first forward feature selection 

with beam search and feature rankings. However, for 

the sake of the simplicity of this paper we do not 

discuss this issues here, instead we show the results 

on the 26 preselected features, which are the same 

for each steel grade. This simplification only slightly 

affects the prediction results, but make it signifi-

cantly easier to present and compare the results. 

Additionally, the MLP network by its nature per-

forms a kind of feature selection by setting the val-

ues of the weights that connect inputs from the un-

important variables to very small values.  
However, it is worth mentioning here, that the 

LHF operators at the steelwork must understand why 

given feature combination influences the result, oth-

erwise, they are not willing to apply the prediction of 

the system. So even if the prediction is correct but 

based on the assumptions which are unclear to the 

LHF operators, the input features for that prediction 

must be changed and the system re-trained to make 

the prediction results understandable and thus ac-

ceptable to the operators. 

Principal Component Analysis, although fre-

quently used in other problems of feature space re-

duction did not prove to be a suitable tool for our 

task. First, because the consecutive eigenvalues de-

crease very slowly for this data and second it makes 

the results very hard to interpret by an expert or LHF 

operator who must approve the model.  
A good practice is to standardize the data before 

the training, e.g. according to the following formu-

lae: 
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Fig. 1. The system for predictions of the quantity of alloys used in the LHF process. 



             INFORMATYKA W TECHNOLOGII MATERIAŁÓW 
 

              

            
During the training process the initially random    

x  x 
  1 k     

 x
std    (x  x) 

2  
weights are being adjusted so that the network error  

  

(4) 
 

   

         

     k  i 1    (the  difference  between  the  desired  and  the  actual 
 

to  make  particular  inputs  influence  independent  of 
output  for  each  training  vector)  is  minimized.  We 

 

used  the  variable  step  search  (VSS)  training  algo-  

their physical range. It may be also be beneficial to 
 

rithms (Kordos & Duch, 2008), because of the effec-  

remove the outliers from the training set. Moreover, 
 

tiveness of incorporating in the algorithm the neuron  

a model with higher sensibility in the intervals with 
 

biases  β as  additional  parameters  adjusted  in  the  

more  dense  data  distributed  may  be  preferred.  To 
 

training   process.   However   other   algorithms   also  

address  the  problem,  for  example,  the  data  can  be 
 

could be used after implementing this extension.  
 

transferred according to hyperbolic tangent (figure 2, 
 

 

 The MLP network has hyperbolic tangent activa-  
equation 5). The other advantage of such a transfor- 

 
 

tion functions in all layers: input, hidden and output.  

mation  is the  automatic reduction of  the outliers’ 
 

The adaptable parameters are the weights and biases  

influence on the model. We do not consider the out- 
 

of the hidden and output layer neurons and the slope  

liers as erroneous values and thus do not reject them, 
 

of tanh functions in input and output layer. The pur-  

but rather reduce their influence on the final model. 
 

pose of using tanh activation functions in the input  

           
 

           layer neurons is to transform the data distribution, as 
 

             discussed in the introduction to 
 

             section 4. The purpose of using 
 

             tanh  activation  function  in  the 
 

             output  layer  neurons  is  to  re- 
 

             duce  the  influence  of  outliers 
 

             on  the  model  outcome.  Thus, 
 

             the  outliers  can  be  retained  in 
 

Fig.  2.  The idea of transforming data from a Gaussian-like distribution to uniform distribu- the training set; they can carry 
 

tion.             some useful information on  
              

As  the  experiments  showed  that  transformation 
  rare  data  points.  On  the con- 

 

trary, with standard MLP network, the best approach  

of both input and output variables improves the pre- 
 

would be rather to eliminate the outliers.  
 

diction  results.  In  the  case  of  neural  network,  the 
 

 

      
 

slope  of  activation  functions  of  input  and  output       
 

neurons are optimized as a part of network training.       
 

In the case of SVR and linear regression, the data is       
 

transformed before the training.           
 

5.   THE NEURAL NETWORK MODULE       
 

The  standard  approach  to  data  regression  using       
 

MLP  networks  is  to  apply  a  3-layer  MLP  network       
 

with  a  linear  input,  logistic  sigmoid  or  hyperbolic       
 

tangent (tanh) hidden and linear output units.       
 

The neural network we use is a three-layer per-       
 

ceptron  (MLP),  as  shown  in  figure  3.  Each  neuron       
 

first sums the incoming signals xi  multiplied by cor- Fig. 3. Architecture of the MLP neural network.  
 

responding   weights   wi    and   then   transforms   the 
  

      
 

weighted sum x by the activation function y(x) (fig-  
The  following  network  parameters  are  tuned  in  

ure 2, equation 5), where y is the output of the neu-  
 

the system: 
    

 

ron (Bishop, 1996): 
           

 

       

–    Input layer: β (slope of tanh function),  
 

     

1 exp( x) 
   

 

x  wi xi y  (5) 
–    Hidden layer: weight and biases,  

 

– Output layer: weight, biases and β (slope of tanh 
 

1 exp( x) 
 

 

i 
     

 

       

function). 
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The  neural  network  learns  the  optimal  parame- networks. An SVM with a sigmoid kernel function is 
 

ters  of  the  activation  function  during  the  training. equivalent  to  a  two-layer,  MLP  network  (Smola  & 
 

The slopes of the activation functions of the hidden Scholkopf, 2001).     
 

layer neurons are fixed (β = 1) to limit the number of  The predictive model generated by SVM classi- 
 

parameters and keep the model simple. However, we fication (as described above) is obtained using only 
 

are going to conduct some experiments to find out if a  small  subset  of  the  training  data  (called  support 
 

making them tunable is justified for our purposes. vectors), for which the cost function takes the high- 
 

   est  values.  That  is  because  the 
 

   training points that lie far from the 
 

   margin (separating hyperplane) do 
 

   not  contribute  to  the  error  value 
 

   and   thus   do   not   influence   the 
 

   shape and location of the decision 
 

   boundaries. Analogously, the 
 

   model produced by SVR (Support 
 

   Vector  Regression)  depends  only 
 

   on  a  subset  of  the  training  data, 
 

   because   the   cost   function   for 
 

   building  the  model  ignores  any 
 

   training  data  close  to  the  model 
 

   prediction. SVM and SVR models 
 

   are  solved  using  quadratic  pro- 
 

Fig. 4. Architecture of the Support Vector Regression (source: (Smola & Scholkopf, 2001)) gramming.   The detailed   discus- 
 

   sion of the method is out of scope 
 

 of   this   paper   and   can   be   found   in   (Smola   & 
 

 Scholkopf, 2001).     
 

  The  experiments  with  Support  Vector  Regres- 
 

 sion were performed in the Statistica software. Sta- 
 

 tistica  provides  an  option  to  generate  the  source 
 

 code for the model in C++. Thus we used the gener- 
 

 ated code and then adjusted it to C# language to be 
 

 able to use it directly in our system.   
 

 6. MULTIVARIATE LINEAR REGRESSION 
 

Fig. 5. The Linear Regression  Least square fitting using the multivariate linear  
  

 

5.   THE SUPPORT VECTOR REGRESSION 
regression  we were  seeking  for  simple  linear de- 

 

pendences between the linear combination of differ-  

MODULE 
 

ent elements xi  (inputs) and the quantity of addition  

  

The goal of Support Vector Machines (SVM) is 
if the addition y still has to be added.  

 

   w
i xi 

  
 

to find the optimal hyperplane that separates the set   y  wo  (6)  
of vectors in such a way that vectors, which belong 

   
 

   i    
 

to one category (class) of the target variable are on  
One  may  think  that it  should be  only  a  one- 

 

one side of the hyperplane and vectors of the other  
 

dimensional case, where only the quantity of a single 
 

class are on the opposite side of the hyperplane. The  

addition in the chemical analysis should determined. 
 

vectors  located  close  to  the  hyperplane  are  called  

However,  some  elements  interact with  each  other 
 

support vectors. Because the original data cannot be  

and depending on the quantity of other elements and 
 

frequently  separated  into  two  classes  by  a  hyper-  

on the time of the process they may be partially re- 
 

plane, the SVM model uses so called kernel function  

moved from the steel going to the slag instead. Thus 
 

to transform the data to a higher dimensional space,  

in reality,  the dependence  on the quantity  of the 
 

where the data can be linearly separated by a hyper-  

same element in the chemical analysis is the strong- 
 

plane.  SVMs  are  to  some  degree  similar  to  neural  

       
 

 – 6 –       
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est,  but  taking  into  consideration  more  elements  within-crossvalidation  runs  and  the  S.D.  ratio  was    
 

tends to improve the prediction results.     between 0.08 and 0.13. The training time of the net-    
 

7. EXPERIMENTAL RESULTS 
     work was of the order of tens of seconds up to single    

 

     minutes,  depending  on  the  dataset  size.  However,    
 

                  

 
The dataset on which the experiments presented 

 the time of building a full model (for one grade of    
 

  steel or for one cluster), including feature selection    
 

in this section were  performed is available from 
    

 

 and selection of optimal neural network architecture    
 

http://www.kordos.com/datasets/steel26.zip. Because 
    

 

 (which can be different for each feature subset) and    
 

the data comes from a real steelworks, it is confiden- 
    

 

 SVR  parameters  can  even  be  of  the  order  of  hours    
 

tial and could not be released as it is. Thus, the 26 
    

 

 on a single processor. That is acceptable in our ap-    
 

input variable names
1
  were replaced by x1, … x26, 

    
 

 plication,  since  the  model  must  be  built  only  once.    
 

all other inputs were removed, only four most com- 
    

 

 The system must only predict the data on the fly and    
 

mon elements (C, Si, Mn, P) were left and the data 
    

 

 the prediction is immediate.       
 

was standardized   with zero mean and unit standard 
       

 

               
 

deviation  (it  would  be  standardized  anyway  before  
Table 1. Mean  Squared  Error  of  predicting  the  quantity  of 

   
 

learning  the  prediction  model).  We tried different     
 

 additives to be added in the LHF process. Prediction performed    
 

number  of  hidden  units  in  the  neural  network.  The 
     

 on the whole dataset. (“prep.” means that the input and output    
 

best  results  were  obtained  for  the  number  between 
     

 data was preprocessed prior to the training by a constant tanh    
 

 

function, selected manually to give the better transformation to     

25 and 35. Thus, we finally used 28 hidden units for     
 

 a uniform data distribution.)         
 

predicting  the  quantities  of  each  element.  The  ex- 
         

 

               
 

periments with MLP neural network were performed 
                 

              MLP   

SVM 
   

 

with software created by us in Delphi. 
                    

         MLP,   SVR  26-28-      
 

      

MLP+ATF 
      

(RBF, 
   

 

(http://www.kordos.com/mknn.html ) The experi- 
                

       β=1   (RBF,  1,      
 

      

26-28-1   

26-28-1  

γ=0.056) β=1,  

γ=0.056),    
 

ments  with linear regression  and  with SVR were 
             

 

              
prep.   prep.    

 

performed in  the Statistica software, using RBF 
                    

 

                      

  

C 
  

0.035 
  

0.041 
  

0.059 
 

0.036 
  

0.050 
   

 

kernels  with  γ=0.056  and  Regression  Type  2  (that               
 

                      

were the parameters giving the best results). Optimal   Si   0.073   0.095   0.065  0.076   0.065    
 

C  and nu  parameters  were determined during  the 
                      

  Mn   0.106   0.119   0.163  0.111   0.154    
 

training  individually  for  each  addition. SVR  was 
               

                      

  

P 
   

0.134 
  

0.148 
  

0.185 
 

0.140 
  

0.142 
   

 

chosen for because it is an effective method, which                
 

                      

  

average 
 

0.087 
  

0.101 
  

0.118 
 

0.091 
  

0.103 
    

even  frequently  performs  better  than  MLP.  How-              
 

                      

ever, on this data it did not, ex-                      
 

cept  for  predicting the  quantity  
Table 2. Mean Squared Error of predicting the quantity of additives to be added in the LHF 

   
 

of silicon.  Nevertheless,  includ- 
    

 

 process. Prediction performed on 5 clusters, as described in chapter 3.      
 

ing  SVR  and  sometimes  even 
      

 

                     
 

including  MLR as  a  weighted         

MLP, 
      

MLP 
  

SVM 
         

 

component of the system (figure 
               

Multivariate 
     

 

          SVM  26-28-        
 

      MLP+ATF β=1      (RBF,  Full    
 

1) improved the results. 
         (RBF,   1,   Linear      

 

       

26-28-1 26- 
     

γ=0.056), 
  

Model 
   

 

         γ=0.056)  β=1,  Regression      
 

 

Ten  runs  of  10-fold  cross- 
               

 

         28-1      
prep.   prep.        

 

                           

validation  were performed and 
                          

                            

   C    0.032 0.038   0.054  0.034   0.048 0.051   0.027    
 

the average  results  on  the test 
                

 

   Si    0.069 0.080   0.064  0.072   0.076 0.080   0.057    
 

part of the dataset are reported in 
                 

   Mn   0.098 0.111   0.151  0.105   0.147 0.159   0.094    
 

table  1 and  table 2.  The  MSE 
                

   P    0.126 0.140   0.172  0.135   0.136 0.144   0.115    
 

errors are always reported on the 
                 

  average   0.081 0.092   0.110  0.086   0.102 0.108   0.073    
 

original  output  data  (not  on  the 
               

                           
 

data transformed by the tanh function). The standard                
 

deviations were usually of the order of 0.002-0.004 8. CONCLUSIONS         
 

for between-crossvalidation and 0.01-0.03 for   
A  system  for  predicting  the  quantities  of  addi- 

   
 

                  
 

1  
The input variables are: chemical analysis at the input stage of 

 tives in the steel production process was presented.    
 

 The paper concentrates on the computational intelli-    
 

the LHF process,  chemical  analysis  at the output stage  (de- 
     

 
gence based prediction block of the system. We have    

 

manded), time and temperature of the process stage, energy and     
 

 

proposed  that  the  input  and  output  variable  trans- 
    

gas (Ar) used during this stage, mass of the steel bath.       
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formation from a Gaussian-like to uniform-like dis-

tribution to be performed during the neural network 

training, incorporated in the training method. That 

gives better results than preprocessing the data be-

fore the training, since it allows adjusting the distri-

bution individually for each feature, without a strong 

a priori assumption that the optimal distribution is 

always uniform. As it can be seen from the tables 1 

and 2, MLP network with adaptable activation func-

tion provides the best results, however not so good 

as the full system (consisting of ANN, SVR and 

MLR modules – figure 1). That results can probably 

be further improved if the selection of the activation 

functions in the hidden layer is performed during the 

training (Eskander, 2008).  
The goal of the system is to precisely calculate 

quantities of additives demanded during the LHF 

process, thus reducing the cost of a single refinement 

process and consequently to allow producing more 

steel monthly. To make the system easier for under-

standing by experts, what is crucial in our applica-

tion, we consider incorporating rule extraction from 

neural network using an adaptation of one of 

Setiono’s methods (Setiono & Thong, 2004). 
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 APPENDIX 1. DATASET PROPERTIES           

  The dataset used in the experiments (available at         

 http://www.kordos.com/datasets/steel26.zip) con-         

 tains  26  continues  inputs  and  four  outputs  (C,  Si,         

 Mn, P). There are 2384 vectors in the data set.          

 Table 3. Correlations between input and output variables in the         
 steel26 in the whole dataset (absolute values)            

                  

   out\in x1 x2 x3 x4 x5 x6 x7 x8 x9  x10 x11 x12 x13   

   C 0.02 0.05 0.01 0.41 0.72 0.09 0.12 0.08 0.32  0.09 0.12 0.09 0.63   

   Si 0.05 0.05 0.02 0.00 0.05 0.06 0.26 0.07 0.06  0.02 0.05 0.03 0.08   

   Mn 0.19 0.21 0.18 0.09 0.16 0.75 0.11 0.24 0.06  0.29 0.34 0.13 0.16   

   P 0.20 0.24 0.18 0.34 0.33 0.46 0.01 0.11 0.36  0.11 0.40 0.16 0.54   

                  

   out\in  x14  x15  x16  x17  x18  x19  x20  x21  x22  x23  x24  x25  x26   

   C  0.07  0.01  0.10  0.06  0.89  0.17  0.68  0.26  0.08  0.32  0.29  0.12  0.37   

   Si  0.01  0.07  0.01  0.06  0.15  0.25  0.12  0.02  0.05  0.06  0.01  0.24  0.14   

   Mn  0.28  0.49  0.15  0.41  0.18  0.01  0.12  0.05  0.14  0.06  0.71  0.02  0.63   

   P  0.10  0.30  0.19  0.42  0.09  0.04  0.17  0.01  0.24  0.36  0.96  0.04  0.12   

 Table 4. Number of records and S.D. ratio in each cluster                 
 
 

Cluster No 
whole 

1 2 3 4 5 
 

 

 dataset  
 

        
 

 Number of 
2348 138 889 251 678 428 

 
 

 vectors  
 

        
 

          

 

 
PREDYKCJA DODATKÓW STOPOWYCH W 

PROCESIE RAFINACJI STALI Z WYKORZYSTANIEM  
SIECI NEURONOWYCH 

 
Streszczenie 

 
Dla uzyskania żądanego składu chemicznego stali wprowa-

dzane są do niej w procesie produkcji dodatki stopowe. Precy-

zyjne przewidywanie końcowego składu chemicznego produ-

kowanej stali jest niezwykle ważne dla ekonomicznego prowa-

dzenia procesu w piecu kadziowym. Zwykle obliczenia są pro-

wadzone w oparciu teorię procesów chemicznych zachodzących 

w ciekłej stali w warunkach równowagi. W pracy problem 

przewidywania masy dodatków stopowych koniecznych do 

uzyskania żądanego składu został rozwiązany przy użyciu 

sztucznych sieci neuronowych i algorytmu maszyny wektorów 

podpierających (SVM). Opisano opracowany model 

inteligentny obliczania dodatków. Przedstawiono zbudowane 

moduły tego systemu: sieci neuronowe, SVM, regresję liniową 

wielu zmien-nych. Omówiono zagadnienia preprocesingu 

danych do uczenia modułów inteligentnych. Przedstawiono 

uzyskane wyniki, wnioski wyciągnięte z badań oraz efekty 

uzyskane w rzeczywi-stych warunkach przemysłowych. 
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