
Selecting Representative Prototypes for Prediction the
Oxygen Activity in Electric Arc Furnace

Marcin Blachnik1, Mirosław Kordos2, Tadeusz Wieczorek1, Slawomir Golak1

1 Silesian University of Technology, Department of Management and Informatics,
Katowice, Krasinskiego 8, Poland; marcin.blachnik@polsl.pl

2 University of Bielsko-Biala, Department of Mathematics and Informatics,
Bielsko-Biała, Willowa 2, Poland: mkordos@ath.bielsko.pl

Abstract. Selecting a set of representative prototypes in prediction systems en-
able us to generate prototype based rules (P-Rules), which constitute a very pow-
erful means of providing domain experts with knowledge about the data and the
process depicted by the data. P-rules has already proved very useful in classifica-
tion tasks. This paper investigates application of P-rules to regression problems.
The problem of our concern is prediction of oxygen activity in an electric arc
furnace during steel scrap melting. For that purpose we use a new algorithm for
determining prototype positions, which is based on conditional clustering. Also a
comparison between the new algorithm and the classical clustering-based meth-
ods for prototype extraction is described.
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1 Introduction

Prototype based rules shortly called P-rules [3] are a concept of representing knowledge
extracted from the data as a triple: a set of prototypes, similarity (or distance) measure
and appropriate reasoning scheme. Typically there are two different schemes:

– nearest neighbor approach (nearest prototype) - where the system decision is ob-
tained by determining the nearest prototype to the given test instance according to
the following rule:

If j = argmin
i=1,...,c

D(x;pi) Then C(x) = C(pj) (1)

where C(x) is a function that returns the value of the instance label x, and c is the
number of prototypes.

– threshold rules - where each prototype represents an associated respective field de-
fined by a prototype and a threshold value:

If D(x;p) < θ Then C(x) = C(p) (2)

According to that rule if an instance satisfies a given condition (is closer to some
prototype then the given threshold) then a particular decision is made. In case when
several rules satisfy that condition usually the order of the sequence of rules deter-
mine the primary rule.
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Although the concept of the nearest neighbor approach is well known for many years
[4], we are reusing it in a different way. Many experts not related to data mining were
reporting the problem of knowledge representation. For example metallurgical experts
face the problem of excessive amount of data, because current furnaces are equipped
with tens of sensors sampled every second (what gives 84 thousand of samples per sen-
sor per day). After a year - a typical period of sample acquisition, the number of samples
is over 31 mln per sensor! Thus, instance selection is becoming a very important issue.

In P-rule systems the goal is to replace the original subset of instances by as small
as possible subset preserving the model accuracy, such that a compromise between the
system accuracy and the number of reference instances (prototypes) is reached. The
instances selected in this way may be used for further in depth analysis of relationships
between the selected objects. For example in metallurgy such prototypes may be used
for identification of the time where a given stage of the process is occurring. In that
situation mutual position of the prototypes (according to the Voronoi diagrams) can be
used to find out what is the current melting stages the process.

Currently most of the applications of P-rules and in general instance selection meth-
ods were dedicated to classification problems for example [2, 7, 12]. However, in this
paper we show how to approach regression problems and how to determine prototype
position efficiently. Typical approaches in this field are based on clustering, where a set
of similar instances is replaced by the center of the cluster and is associated with its
label obtained by averaging output values of all samples within that cluster. However,
this approach is not appropriate for regression problems, because it causes an unnec-
essary increase of the number of prototypes and it ignores output information during
the training. Such problem appears because prototypes are obtained independently of
the output labels. To address this issue we propose another solution, which is based on
conditional clustering where information about output values is used in the clustering
process as a clustering condition.

Our approach has been applied to a dataset describing the metallurgical process,
where the task was to predict the amount of active oxygen in the electric arc furnace
during the steel scrap meltdown.

The paper is organized as follow: the next section describes the dataset used in
our experiments. Section (3) explains how to use the conditional clustering to deter-
mine prototype positions. Section (4) presents the obtained results of the application
of the proposed method to predict the amount of oxygen activity. The last section (5)
concludes the paper, discusses the obtained results and indicates the further research
directions.

2 The problem definition and dataset description

The electric arc furnace (EAF) is the main part of the metal scrap recycling process in
steel mini-mill plants. EAF uses the heat generated by electric arcs generated between
the graphite electrodes and metal scraps to melt the steel. The process of melting scrap
metal in EAFs is used for production of high quality steel. The process is performed in
several stages. At least four conditions needs to be satisfied before melted steel can be
tapped out from the EAF: no solid metal pieces should be present inside the furnace,



the carbon content should be at a required level, the temperature should be at a specified
level and required amount of oxygen should be dissolved in the bath. Reactions taking
place inside the furnace are much more predictable if the oxygen activity is controlled.
Knowledge of the bath oxygen activity during the operation enables operators to pre-
dict what reactions are taking place inside the furnace more accurately and to operate
furnaces much closer to their optimal operating conditions by minimizing tolerances of
the produced steel parameters as well as minimize the furnace worn-out and energy us-
age. Once the desired steel composition, temperature and oxygen activity are obtained
in the furnace, the tap-hole is opened, the furnace is tilted and the steel is poured into a
ladle and undergoes the next batch operation (usually a ladle furnace or ladle station).
During the tapping process bulk alloy additions are made based on the bath analysis
and the desired steel grade. Deoxidizers may be added to the steel to lower the oxygen
content prior to further processing.

2.1 Dataset description and preprocessing steps

To predict the value of oxygen activity we had to extract important information from
the industrial database. The dataset is populated with measurements obtained from the
EAF process controllers and sensors. Every 0.1 second all sensors are sampled and the
obtained values are collected in the industrial database. This allows measuring the mass
of each steel scrap bucket loaded into the furnace, energy consumed during the process,
amount of carbon and oxygen injected into the furnace, temperatures of the bottom of
the furnace casing, the time periods where the process gets suspended. All the values
are used to construct the dataset.

The output value that should be predicted (oxygen activity) is recorded only few
times during the melting process, because it requires turning off the arc and is very
expensive. The solution proposed in this paper selects the nearest past values of all
sensors for each oxygen measurement, except the buckets weight values which were
constant for each individual melt. Then for that melt, instead of directly predicting the
absolute value of oxygen activity the derivative is calculated.

The final dataset used in our experiment includes 6263 samples described by 31
attributes that are: derivatives of six sensors, which measure the temperature at the
bottom of the furnace casing, derivative of the amount of carbon, oxygen injected to
the furnace by five lances and the burners, electric energy consumed by the process and
the total weight of the steel scrap.

Because the values gathered from the sensors include many outliers, each attribute
after transformation from the row signal into the derivative is transformed with the
hyperbolic tangent function to reduce the outlier’s influence on the training process [9].
The transformation requires determining the linear coefficient that adjusts the signals to
the appropriate range of values. For that propose the Z-transformation in the following
form is used:

ai = tanh

(
ai − ai
std(ai)

)
(3)

where tanh() - hyperbolic tangent function, ai - i-th attribute of the dataset, ai - mean
value of i-th attribute and std(ai) - standard deviation of i-th attribute.



3 Instance construction

As mentioned in the introduction we had to extract representative prototypes that can
be further used by human experts for in depth investigation. To achieve that goal we
are interested in prototypes that can be interpreted independently and to obtain that
we use the nearest neighbor decision algorithm. For the same reason we do not use
other prototype based algorithms like RBF networks [1] or the family of Reduced Set
Suppoort Vector Machines [11], where the predicted output of the system is a linear
combination of all prototypes, what reduces the overall comprehensibility of the system.

One of the simplest solution of prototype construction is input data clustering [8].
In the literature many different clustering algorithms are known [5]. One of the most
popular clustering methods is based on the optimization of scalar cost function (OSCF),
which has very low (linear) computational complexity O(ncdi) where i is the number of
iterations (constant), d the dimensionality of the problem (constant), and c is the number
of cluster centers, preserving n ≫ c. An example of this family are: k-means algorithm,
expectation maximization algorithm and a family of Fuzzy C-means clustering.

As it was mentioned in the introduction obtaining informative prototypes requires
incorporation of system output ((y) variable) in the prototype construction process.
A typical approach, based on a simple input data clustering does not preserve such
information and thus the process needs to be modified. There are several possibilities
of the modification. One of them is based on using input data together with output data
for the clustering process. In this approach the dataset Z is defined by concatenation
of input and output data Z = X ∪ y. In this case the output variable y is considered
to be one of the variables of the dataset and as a result the number of attributes of
Z is m + 1. Such solution is often used in training the ANFIS (artificial neural fuzzy
inference system) [6]. However, because too little attention is paid to the output variable
this approach is not sufficient in our case.

Another typical approach is based on discretization of the output y attribute and
then independent clustering of the instances falling into each discretization bean. This
approach causes a very strong influence of model output (y) on the obtained proto-
types, so in practical applications the obtained prototype position highly depends on
the discretization process. To overcame this problem a good solution can be obtained
by applying a soft discretization by defining fuzzy membership functions (MF) instead
of hard beans and incorporating these soft discretization beans in the clustering process.

A set of clustering methods, which can incorporate such external input in the clus-
tering process can be found in the literature. These methods are often called context
clustering methods. For instance Conditional Fuzzy C-means (CFCM) [10], which re-
quires an external variable that should be in the range [0;1] representing the clustering
context. In the described approach the clustering process should be repeated for each
membership function defined for the output variable and the values of the MF of each
input vector should be provided as an external variable. The final cluster centers (proto-
types) of each clustering should be concatenated into a single subset of reference points,
as described in fig. (1)



Fig. 1. Diagram of the data analysis process

3.1 Conditional Fuzzy clustering

The most important limitation of FCM in the applications to P-rules system is a lack
of information about output variable, which leads to a reduced comprehensibility of
the obtained rules. That can be solved by conditional clustering for example by the
use of Conditional Fuzzy C-Means. This algorithm allows introducing external knowl-
edge, which represents the influence of certain instance on the clustering process. This
knowledge is represented as instance weights fk ∈ [0 1] defined for every instance k in
the training set. The value of weight (fk) is usually calculated as a value of the MF as
fk = µ (yk) of some external variable yk, where µ(·) is the function describing the MF.

In CFCM method the cost function remains identical to the FCM one (4),

Jm(U,V) =
c∑

i=1

n∑
k=1

(uik)
z ∥xk − vi∥2A (4)

where U is a partition matrix of elements uik representing the value of membership
of instance i to the cluster k, matrix V represents a set of c cluster centers and z >
1 is some constant, typically z = 2. The partition matrix must satisfy the following
requirements:



1o each vector xk belongs to the i-th cluster to a degree between 0 and fk, where
0 ≥ fk ≥ 1:

∀
1≤i≤c

∀
1≤k≤n

uik ∈ [0, fk] (5)

2o sum of the membership values of k-th vector xk in all clusters is equal to fk (in FCM
it is equal to 1)

∀
1≤k≤n

c∑
i=1

uik = fk (6)

3o no clusters are empty.

∀
1≤i≤c

0 <
n∑

k=1

uik < n (7)

Cost function (4) is minimized according to U,V by the use of Piccard iteration under
these conditions by:

∀
1≤i≤c

vi =

n∑
k=1

(uik)
zxk

/
n∑

k=1

(uik)
z (8)

∀
1≤i≤c

1≤k≤n

uik = fk

/
c∑

j=1

(
∥xk − νi∥
∥xk − νj∥

)2/(z−1)

(9)

where both equations are iteratively evaluated until the convergence is obtained.

3.2 Defining the clustering context

In the above presented approach defining appropriate clustering context requires defin-
ing fuzzy membership functions for the output variable y. This can be done in several
ways. One solution is based on manually adjusting fuzzy MF to the output variable.
This can be used if the expert can manually define the areas of interests for the out-
put variable. In that case the obtained solution may be very helpful in improving the
interpretability of obtained prototypes. Another solution is to adjust the MF automati-
cally. The most naive solution is based on splitting the variable into equal width beans
and then setting the position of the MF (for example center of the Gaussian MF) in the
middle of each bean with the width of that functions adjusted in this way that the MFs
crosses the membership level of 0.5. A more accurate approach can be obtained by the
fuzzy clustering of the output variable, which allows for automatically obtaining fuzzy
membership values. In that solution FCM clustering is applied for the single variable y.
The results of FCM determine centers of the clusters and the partition matrix represents
the values of the membership function of each vector to all clusters. In all practical
experiments the MF were defined automatically by a simple equal width principle.



3.3 Nearest neighbor rule adaptation

The nearest neighbor prediction rule is simply based on assigning output value identical
to the label of the closest prototype. The drawback of that rule is a stair-like output
function, where the Voronoi diagram borders are the borders of the plateau of the output
function. A simple well known modification of that rule is based on taking into account
k nearest neighbors and taking average over all k neighbors. In practise this approach is
still not very useful because the predicted values also belong to the finite set of values
(output is also a stair-like function), however with much higher number of steps. To
overcome this limitation a weighed kNN rule can be used, where the influence of the
label of the closest prototypes is inversely proportional to the distance between the k
prototypes and the test vector according to the formula (10)

c(x) =

k∑
i=1

c (pi) ·D (x,pi)
k∑

j=1

D (x,pj)

(10)

This formula allows pseudo-linear transformation of the k nearest neighbors output val-
ues. Unfortunately it reduces the comprehensibility of the system, but on the other hand
it increases its accuracy. So the interpretability of the system is inversely proportional
to the number of considered nearest neighbors in the decision process (k). In this case
a compromise between comprehensibility and accuracy needs to be established. In our
experiments we have tested two different solutions; one that preserves the highest com-
prehensibility k = 1 and a second one for k = 2 that improves the accuracy, but still
preserves simplicity in the decision making process.

4 Numerical examples

In our tests we have compared the behavior of the algorithm described in this paper to
the classical clustering methods, to the kNN algorithm and to linear regression as the
base rates. In all experiments we have optimized the number of prototypes. The mem-
bership functions defined for the oxygen activity (output of the system y) for CFCM
clustering are presented in the figure (2). In all the experiments the results of a 10-fold
crossvalidation were recorded and a comparison between prototype based methods is
presented in figure (3), as well as in the table (1) where also a comparison with other
methods like 1NN and kNN is provided. Results marked as W were obtained using
weighted version of nearest neighbor rule. For all the methods only the best results are
reported in the table. It is important to notice that the obtained values of RMSE are
overestimated, because the parameter optimization process was not embedded in the
crossvalidation procedure. However, it should not significantly affect the comparison
of the methods, because always the same number of parameters were tested for all the
algorithms.

5 Conclusions

A new algorithm for optimization of the prototype positions for P-rules was presented.
The proposed algorithm uses the knowledge of the output values during the clustering
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Fig. 2. Membership functions defining the clustering context defined for the output variable.

model RMSE #P
fcm 0.85±0.038 31
cfcm 3 0.83±0.029 9
W(k=2) cfcm 3 0.84±0.028 9
cfcm 6 0.82±0.032 12
W(k=2) cfcm 6 0.82±0.035 12
kNN 0.80±0.031 k=100
W kNN 0.80±0.031 k=100
kNN 1.07±0.039 k=1

Table 1. Comparison of RMSE and its standard deviation and mean number of prototypes for all
compared methods

process. That results in the obtained prototypes being much more representative and in
significantly lower error rates. In the presented application we were unable to obtain
results as good as for the optimized k-NN classifier. However, we were able to radi-
cally reduce the computational complexity, so instead of over 6 thousand vectors, only
12 prototypes were used. The obtained results also prove that determining the correct
shape and number of membership functions for the output values is very important.
The results show that a higher number of clustering contexts (higher number of mem-
bership functions defined for the output variable) leads to much lower error rates, while
it does not influence the number of prototypes significantly. In the presented approach
the membership functions were defined manually, however in the further research it
should be possible to determine them automatically based on the distribution of values
of the output variable.

Surprisingly, weighted nearest neighbor rule applied to both: prototypes and to orig-
inal data did not improve the accuracy, but rather decreased it or increased the variance.

Acknowledgment

The work was sponsored by the Polish Ministry of Science and Higher Education,
project No. N N516 442138 and N N508 486638.



0 10 20 30 40 50

0.8

0.85

0.9

0.95

1

R
M

S
E

# of prototypes

 

 
CFCM 3
CFCM 6
FCM

Fig. 3. RMSE as a function of the number of prototypes obtained with FCM and CFCM with 3
and 6 different clustering contexts and the 1NN rule

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
2. Blachnik, M., Duch, W., Wieczorek, T.: Selection of prototypes rules – context searching via

clustering. LNCS 4029, 573–582 (2006)
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