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Abstract. The paper presents algorithms for instance selection for regression
problems based upon the CNN and ENN solutions known for classification tasks.
A comparative experimental study is performed on several datasets using multi-
layer perceptrons and k-NN algorithms with different parameters and their vari-
ous combinations as the method the selection is based on. Also various similarity
thresholds are tested. The obtained results are evaluated taking into account the
size of the resulting data set and the regression accuracy obtained with multi-
layer perceptron as the predictive model and the final recommendation regarding
instance selection for regression tasks is presented.
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1 Introduction

1.1 Motivation

There are two motivations for us to undertake research in the area of instance selec-
tion for regression problems. The first one is theoretical - most research on instance
selection, which has been done so far refers to classification problems and there are
only few papers on instance selection for regression tasks, which do not cover the topic
thoroughly, especially in the case of practical application to real-world datasets. And
our second motivation is very practical - we have implemented in industry several com-
putational intelligence systems for technological process optimization [1], which deal
with regression problems and huge datasets and there is a practical need to optimally
reduce the number of instances in the datasets before building the prediction and rule
models.

There are following reasons to reduce the number of instances in the training dataset:

1. Some instance selection algorithms, as ENN, which is discussed later, reduce noise
in the dataset by eliminating outliers, thus improving the model performance.



2. Other instance selection algorithms, as CNN, which is also discussed later, discard
from the dataset instances that are too similar to each other, what simplifies and
reduces size of the data.

3. The above two selection models can be joined together to obtain the benefits of
both.

4. The training performed on a smaller dataset is faster. Although reducing the dataset
size also takes some time, it frequently can be done only once, before attempting
various models with various parameters to match the best model for the problem.

5. While using lazy-learning algorithms, as k-NN, reducing the dataset size also re-
duces the prediction time.

6. Instance selection can be joined with prototype selection in prototype based sys-
tems, e.g. prototype rule-based systems.

1.2 Instance Selection in Classification Problems

In that area many research have been done using the k-nearest neighbor algorithm (k-
NN) for instance selection in classification tasks. The early research in that area lead
to the Condensed Nearest Neighbor rule (CNN) [2] and Edited Nearest Neighbor rule
(ENN) [3]. These basic algorithms were further extended leading to more complex ones
like Drop1-5 [6], IB3, Gabriel Editing (GE) and Relative Neighborhood Graph Editing
(RNGE), Iterative Case Filtering (ICF), ENRBF2, ELH, ELGrow and Explore [7]. In-
stead of directly selecting instances from the training data an interesting approach for
training k-NN classifier was proposed by Kunheva in [5], where preselected instances
were relabeled, such that each instance was assigned to all class labels with appropriate
weights describing the support for given label. A large survey including almost 70 dif-
ferent algorithms of instance selection for classification tasks can be found in [7]. The
instance selection algorithms were designed to work with k-NN classifier, so an inter-
esting idea was proposed by Jankowski and Grochowski in [4]; to use the algorithms
as instance filters for other machine learning algorithms like SVM, decision trees etc.
By filtering noisy and compacting redundant examples they were able to improve the
quality and speed of other classification algorithms. In this paper we aim to obtain the
same for regression tasks.

1.3 Challenges in Regression Tasks

The instance selection issue for regression tasks is much more complex. The reason is
that in classification tasks only the boundaries between classes must be precisely deter-
mined, while in regression tasks the output value must be properly calculated at each
point of the input space. Moreover, the decision in classification tasks is frequently bi-
nary or there are at most several different classes, while in regression tasks, the output
of the system is continuous, so there are unlimited number of possible values predicted
by the system. That causes that the dataset compression obtained by instance selection
can be much higher in classification than in non-linear regression problems. Moreover,
the decision about rejection of a given vector in classification tasks can be made based



on right or wrong classification of the vector by some algorithm. In regression prob-
lems, rather some threshold defining the difference between the predicted and the ac-
tual value of the vector output should be set. As discussed later, the threshold should be
rather variable than constant, taking different values in different areas of the data. Thus,
determining the threshold is an issue that does not exist in classification tasks. Another
problem is the error measure, which in classification tasks is very straightforward, while
in regression tasks, the error measure can be defined in several ways and in practical
solutions not always the simple error definitions as the MSE (mean square error) work
best [1].

Because of the challenges, there were very few approaches in the literature to in-
stance selection for regression problems. Moreover, the approaches were usually not
verified on real-world datasets. Zhang [9] presented a method to select the input vectors
while calculating the output with k-NN. Tolvi [10] presented a genetic algorithm to per-
form feature and instance selection for linear regression models. In their works Guillen
et al. [11] discussed the concept of mutual information used for selection of prototypes
in regression problems.

2 Methodology

2.1 ENN and CNN Instance Selection Methods

The CNN (Condensed Nearest Neighbor) algorithm was proposed by Hart [2]. For clas-
sification problems, as shown in [4], CNN condenses on the average the number of vec-
tors three times. CNN used for classification works in the following way: the algorithm
starts with only one randomly chosen instance from the original dataset T. And this
instance is added to the new dataset P. Then each remaining instance from T is classi-
fied with the k-NN algorithm, using the k nearest neighbors from the dataset P. If the
classification is correct, then the instance is not added to the final dataset P. If the clas-
sification is wrong - the instance is added to P. Thus, the purpose of CNN is to reject
these instances, which do not bring any additional information into the classification
process.

The ENN (Edited Nearest Neighbor) algorithm was created by Wilson [3]. The main
idea of ENN is to remove given instance if its class is different than the majority class
of its neighbors, thus ENN works as a noise filter. ENN starts from the entire original
training set T. Each instance, which is correctly classified by its k nearest neighbors is
added to the new dataset P and each instance wrongly classified is not added. Several
variants of ENN exist. Repeated ENN, proposed by Wilson, where the process of ENN
is iteratively repeated as long as there are any instances wrongly classified. In all k-NN
algorithm proposed Tomek [12], the ENN is repeated for all k from k=1 to kmax.

2.2 RegENN and RegCNN: ENN and CNN for Regression Problems

The first step to modify the CNN and ENN algorithms to enable using them for regres-
sion task is to replace the wrong/correct classification decision with a distance measure
and a similarity threshold, to decide if the examined vector can be considered as simi-
lar to its neighbors or not. For that purpose we use Euclidean measure and a threshold



θ, which express the maximum difference between the output values of two vectors to
consider them similar. Using θ proportional to the standard deviation of several nearest
neighbors of the vector xi reflects the speed of changes of the output around xi and
allows adjusting the threshold to that local landscape, what, as the experiments showed,
allows for better compression of the dataset. Then we changed the algorithm used to
predict the output Y (xi) from k-NN to an MLP (multilayer perceptron) neural net-
work, which in many cases allowed for better results (see Table 1). Additionally the
best results were obtained if the MLP network was trained not on the entire dataset, but
only on a part of it in the area of the vector of interest. The algorithms are shown in the
following pseudo-codes.

Algorithm 1 RegENN algorithm
Require: T
m← sizeof(T);
for i = 1 . . .m do
Ȳ (xi) =NN((T \ xi),xi);
S ←Model(T,xi)
θ = α · std (Y (XS))
if
∣∣Y (xi)− Ȳ (xi)

∣∣ > θ then
T← T \ xi

end if
end for
P← T
return P

Algorithm 2 RegCNN algorithm
Require: T
m← sizeof(T)
P = ∅
P← P ∪ x1;
for i = 2 . . .m do
Ȳ (xi) =NN(P,xi)
S ←Model(T,xi)
θ = α · std (Y (XS))
if
∣∣Y (xi)− Ȳ (xi)

∣∣ > θ then
P← P ∪ xi;
T← T \ xi

end if
end for
return P

Where T is the training dataset, P is the set of selected prototypes, xi is the i-th
vector,m is the number of vectors in the dataset ,Y (xi) is the real output value of vector
xi, Ȳ (xi) is the predicted output of vector xi, S is the set of nearest neighbors of vector
xi, NN(A,x) is the algorithm, which is trained on dataset A and vector x is used as a test
sample, for which the Y (xi) is predicted (in our case NN(A,x) is implemented by k-NN
or MLP), kNN is the k-NN algorithm returning the subset S of several closest neighbors
to xi, and θ is the threshold of acceptance/rejection of the vector as a prototype, α is a
certain coefficient (it will be discussed in the experimental section) and std (Y (XS))
is the standard deviation of the outputs of the vectors in S.

2.3 Instance Selection Extension for RapidMiner

We used the RapidMiner [15] software for implementing the algorithms and performing
numerical experiments. We created in Java the instance selection modules and incorpo-
rated them in the entire model. The source code of the instance selection modules, the
.jar file containing them, that can be used with RapidMiner without the necessity to
compile the sources, the .xml file with the process and the datasets we used can be ob-
tained from [16]. The most outer loop of the model iterates over θ or α parameters, the
lower level loop is a 10-fold crossvalidation, where in the training part the RegCNN



or RegENN algorithm is performed and an MLP network is trained on the selected in-
stances, and in the test part this MLP networks is tested on the test set. The RegCNN or
RegENN module contains the NN(A,x) algorithm which in Fig. 1 is an MLP network.

Fig. 1. The RapidMiner model used in the experiments

3 Experiments and Results

3.1 Dataset Description

We performed the experiments on five datasets. Before the experiments all the datasets
were standardized so that the mean value of each attribute is zero and the standard devi-
ation is one to enable easy comparison of the results obtained with different datasets and
of the parameters used in the experiments. All the datasets in the form used in the exper-
iments can be download from our web page [16]. These datasets included four datasets
from the UCI Machine Learning repository [14]: Concrete Compression Strength (7 in-
put attributes, 1030 instances), Forest Fires (10 input attributes, 518 instances), Crime



and Communities (7 input attributes, 320 instances), Housing (13 input attributes, 506
instances). One dataset (Steel: 12 input attributes, 960 instances) contains data from
steel production process and the task here is to predict the amount of carbon that must
be added to the liquid steel in the steel-making process to obtain steel of desired param-
eters, given the chemical and physical properties of the steel and the current melting
process.

3.2 Experimental Results

Table 1. Results for Steel, Concrete, Crime, Forest and Housing datasets obtained with the opti-
mal α parameters (where θ = α · std (Y (XS))

algorithm. Steel Concrete Crime Forest Housing

ENN-3NN
MSE 0.23±0.08 0.94±0.10 0.69±0.09 1.44±0.3 0.46±0.11

vect(α) 740±3(5) 275±6(4) 211±3(5) 373±6(1) 348±4(5)

ENN-9NN
MSE 0.25±0.08 0.92±0.08 0.68±0.09 1.42±0.3 0.43±0.10

vect(α) 776±2(5) 277±5(4) 210±2(5) 379±5(10) 350±4(5)

ENN-MLP90
MSE 0.21±0.06 0.92±0.10 0.66±0.09 1.39±0.3 0.42±0.09

vect(α) 772±3(5) 279±5(3.5) 206±1(6) 389±6(6) 365±3(6)

ENN-MLP30
MSE 0.21±0.06 0.90±0.10 0.67±0.08 1.39±0.3 0.41±0.08

vect(α) 773±3(5) 245±6 (4) 209±1(8) 391±6(7) 359±3(6)

ENN-MLP10
MSE 0.23±0.06 0.90±0.10 0.67±0.08 1.38±0.3 0.42±0.08

vect(α) 752±3(5) 210±5(3.4) 215±1(7) 388±7(10) 360±3(7)

CNN-3NN
MSE 0.24±0.06 0.97±0.10 0.68±0.07 1.41±0.3 0.40±0.09

vect(α) 747±6(0.1) 782±7(0.4) 235±2(0.3) 429±6(0.1) 385±3(0.4)

CNN-9NN
MSE 0.23±0.07 0.96±0.10 0.66±0.06 1.38±0.3 0.39±0.08

vect(α) 746±8(0.15) 783±6(0.4) 243±2(0.3) 429±6(0.8) 387±3(0.5)

CNN-MLP90
MSE 0.23±0.08 0.96±0.10 0.68±0.07 1.39±0.3 0.41±0.08

vect(α) 741±6(0.1) 787±6(0.5) 240±2(0.3) 423±4(0.2) 387±3(0.3)

CNN-MLP30
MSE 0.21±0.07 0.95±0.09 0.67±0.07 1.38±0.3 0.42±0.10

vect(α) 752±12(0.1) 784±7(0.5) 238±2(0.3) 426±4(0.1) 391±3(0.3)

CNN-MLP10
MSE 0.22±0.01 0.94±0.10 0.68±0.06 1.42±0.3 0.42±0.08

vect(α) 763±10(0.1) 780±7(0.5) 243±2(0.3) 424±4(0.1) 387±3(0.3)

ENN-CNN
MSE 0.19±0.05 0.86±0.07 0.64±0.07 1.35±0.3 0.39±0.08
vect 722±10 186±4 197±4 366±4 339±6
α 5/0.1 3.5/0.5 8/0.3 8/0.5 6/0.3

No selection
MSE 0.23±0.08 1.01±0.10 0.71±0.10 1.50±0.3 0.40±0.08
vec 864 927 288 466 455

We performed the experiments using the model described in the previous section.
Both MLP networks (the network used for instance selection and the network used
for the final prediction) had one hidden layer with sigmoid activation function and the
number of hidden neurons was rounded to (number of attributes + 1) / 2 + 1. Both
networks were trained with the backpropagation algorithm for 500 training cycles with
learning rate=0.3 and momentum=0.2. The stopping error was 1.0E-5.

In the case of ENN, which is a kind of a noise filter, the θ should be rather big,
because only the outliers should be rejected. In the experiments with ENN we used 50



different values of θ usually from 0.05 to 5.0 or α usually from 0.5(1) to 50(100) in the
case of variable θ. On the other hand for the CNN algorithm θ should be small, because
only if two vectors are very similar, one of them should be rejected. In the experiments
with CNN we used 50 different values of θ from 0.001 to 0.5 or α usually from 0.01 to
5 for each dataset. We used the following algorithms to predict the value to the vector
being selected:

– k-NN with k=3
– k-NN with k=9 (frequenty k close to 9 is the optimal value [13])
– MLP network trained on the entire training data within one validation of the cross-

validation process (that is 90 percent of whole the dataset, therefore it is shown in
the result section as CNN-MLP90 or ENN-MLP90)

– MLP network trained on 33 percent of the training vectors, which were closest
to the considered vector (shown in the result section as CNN-MLP30 or ENN-
MLP30)

– MLP network trained on 11 percent of the training vectors, which were closest
to the considered vector (shown in the result section as CNN-MLP10 or ENN-
MLP10)

Because of limited space, only the best results obtained for each model with variable
θ are shown in the table and comparison of results obtained with various θ (constant and
variable) are shown for one dataset and one method in a graphical form.

Fig. 2. Dependance of MSE (MSE_CT: with constant θ, MSE_VT: with variable θ) and the num-
ber of selected vectors (vect_CT: with constant θ, vect_VT: with variable θ) on the threshold θ
(when it is constant) and on α (whereθ = α · std (Y (XS)))



4 Conclusions

We presented an extension of CNN and ENN, called RegCNN and RegENN algorithms
that can be applied to regression tasks and experimentally evaluated the influence of the
θ and α parameter and various learning methods within the selection algorithm on the
number or selected vectors and the prediction accuracy obtained with an MLP neural
network on the reduced dataset. The general conclusions are that in most cases the best
results are obtained using an MLP network trained on the subset of closest neighbors
of the considered point. It was observer, that in general the θ used with CNN could be
on average set to 0.1 (or α to 0.5) of the MSE value while performing prediction on the
unreduced dataset, while the θ used with ENN to 5 times the value of the MSE (or α
to 5) for standardized data, however, the algorithms are not very sensitive to the change
of α in the terms of prediction accuracy, but especially RegENN with lower α allows
for better dataset compression. Variable θ allows for reducing more vectors, while it
does not influence the prediction accuracy. The best results are obtained if first ENN
and after that CNN was applied to the dataset.

It should be possible to significantly improve the results, first by tuning the pa-
rameters of the MLP network and using more efficient MLP training methods, such as
Levenberg-Marquardt algorithm and second by using more advanced instance selection
methods, which were shortly presented in the introduction. These issues will be the area
of our further research.
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