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Abstract – We discuss several ways to accelerate genetic
algorithm-based instance selection, where the two objectives
are a minimal number of training instances and maximal
accuracy of the classifier (we use neural networks) on the
test data. We discuss several ways to accelerate the process,
but we especially focus on two parameters: fitness function
and chromosome length reduction. We evaluate different
fitness functions, discuss their performance and propose the
guidance for choosing the optimal one in respect to the
process speed and stability. We also discuss the possibility of
reducing the chromosome length during the optimization by
excluding from further optimization these positions that are
unlikely to change. We verify our method experimentally as
well on several real-world datasets.
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I. INTRODUCTION AND STATE OF THE ART

A. instance selection

Good data preprocessing, including data selection is
frequently the most important part of the prediction
process, even more important than the optimal model
parameters. This is because the models can be only as
good as the data used for their learning. The list of
data selection purposes begins with reduction of the data
size and noise elimination, which both improve the data
quality. They allow for achieving higher accuracy, shorter
learning time and lower complexity of predictive models
as well as easier data interpretation.

Data selection comprises feature selection and instance
selection. Much more research has been done so far in
feature selection. Since feature selection and instance
selection are equally important. To bridge the gap our
research focuses on instance selection.

There are two objectives in instance selection (which
are sometimes contradictory): to obtain a low number
of instances (vectors) in the training set and to obtain
high classification accuracy. Thus the classical instance
selection methods fall into two categories: noise filters
and condensations methods. A good idea is to apply noise
filter first and then a condensation algorithm. Description
and experimentally evaluation of many instance selection
methods can be found in [1]–[3].

In most of the instance selection methods, the decision
is based on some distance or neighborhood concept.
Further the input space can be divided into clusters to
achieve still higher speed, but also to ensure good local
data representation by the selected instances [4].

A frequently used noise filter is ENN (Editted Nearest
Neighbor) [5]. ENN uses k-NN to predict the class of each
instance and marks the instances for which the predicted
class is different than the real class. In the next step
the marked instances are removed from the training set,
as they are considered noise. The data size reduction
obtained by ENN is usually very little at the level of 10%
and higher compression indicates poor data quality.

Much more instances can get removed because of their
redundancy and their irrelevance for the classification
process. However, removing too many instances from
this group can result in decrease of the classification
capabilities of the models trained on the reduced dataset.

DROP-3 and the used in our experiments IB3 belong to
the best classical condensation algorithms. IB3 (Instance
Based Learning v.3) [6] first selects the instances misclas-
sified by k-NN (as the correctly classified instances are
believed not to provide any additional information) and
then it removes from the selected set each instances if it
does not cause accuracy loss.

Instance selection finds application in almost every
domain where the problem can be expressed by data and
many of the classical methods can be also adjusted to
regression tasks [7], [8]. We have already successfully
applied our research on instance selection in metallurgical
problems and we are currently considering an application
in optical immunosensors [9], [10].

Usually higher compression can be achieved for bigger
datasets. A linear complexity method has been proposed
in [11], what makes the application quite well adapted to
big data also in terms of computational complexity.

First were developing classical [8], [12] and neural-
network embedded [13], [14] instance selection methods.
But once we tried an evolutionary approach, we were as-
tonished by the excellent results, but equally disappointed
with the computational cost.



B. genetic algorithms

Genetic algorithms (GA) can be applied to many opti-
mization problems. Their good description can be found
in [15]–[17]. We will discuss their application to instance
selection. The main advantage of genetic algorithms and
other evolutionary optimization methods is their ability
to exploit the data space in a much detailed level than
traditional methods based on gradient or search heuristics
and thus to find better solutions. However, their main
disadvantage is the computational cost, which is several
order of magnitude higher than that of classical instance
selection methods. Our goal is to keep the high quality
of the solutions obtained with genetic algorithms but to
decrease the computational cost as far as possible.

Genetic algorithms use a population of individuals
(binary vectors) of the length equal to the number of
instances (vectors) in the original dataset. Each position
at the individual denotes one instance from the dataset. 1
(or true) at this position means that the corresponding
instance is selected and 0 (or false) means that it is
rejected from the final dataset.

Genetic algorithms iteratively use the following opera-
tions:

• calculation of the quality (fitness function)
• selection of parents with probability proportional to

their fitness function, of recombination points and
creating offspring

• evaluating the quality (fitness) of the parents and
children and deciding which individuals will enter
into the next generation

• applying mutation with some probability by ran-
domly changing single positions in the chromosome
of randomly selected individuals

Depending on the version of genetic algorithms, par-
ticular operations can be performed in different ways.
Here we shortly describe the operations in the Genera-
tional GA, Steady State GA and CHC GA. In the next
section we introduce our improvements based on the
three methods, where our main goal is to shorten the
optimization time or (what is frequently equivalent) to
obtain a better results (in terms of classification accuracy
and data compression) in the same amount of time.

The next division of genetic algorithms is into single-
objective and multi-objective. In multi-objective opti-
mization the aim is to find the Pareto-front of non-
dominated solutions, what corresponds to a simultaneous
optimization for various α parameters in equations 1-5
[18], [19]. We are currently investigating the usability of
multi-objective evolutionary optimization (the objectives
are dataset size and classification accuracy) to instance
selection. Our preliminary research shows that this can be
a good solution for instance selection in regression prob-
lems. However, in this work we use single-optimization
version, because in most of the experiments presented in
this paper, the reasonable Pareto front was very short and

sometimes it was reduced to a single point (changing α
very little influences accuracy - see Table. 1).

It was verified [20], [21] that the steady state genetic
algorithms display faster convergence than generational
ones. The explanation of that fact is that in steady state
algorithms, the offspring immediately replaces the worst
individual in the population, what at this moment makes
the population better as a whole, while in generational
genetic algorithms we have to wait for that improvement
until the next iteration.

In CHC [22] genetic algorithms the parent popula-
tion is used to generate the intermediate population and
then the best individuals from both population enter the
next population. This is to some degree an extension
of the elitism principle in the generational GA, when
some number of the best individuals (the elite) from the
parent population enter the next population. CHC uses a
different recombination operation, so called HUX, which
exchanges half of the bits that differ between parents, with
the crossover point being randomly chosen. However, if
the selected parents are too similar, the recombination is
not performed. In CHC the mutation is applied after the
recombination phase and the mutation is usually quite
strong (up to 35%, comparing with the typical mutation
rates of about 1% in classical generational GA). The CHC
used for instance selection in [23] proved to be a very
efficient method.

The method we use combines the best features of
generational, steady-state and CHC genetic algorithms.
The first difference between classical and evolutionary
instance selection is that evolutionary algorithms optimize
globally the whole training dataset, unlike the classi-
cal methods, which deal with each instance separately.
The optimization can be either single-objective or multi-
objective, binary or real-value in cease of instance weight-
ing [19], [24].

There have been some propositions in the literature
to use genetic or evolutionary algorithms for instance
selections [25]–[27]. Evolutionary optimization is usually
able to find the subset of instances, which is much more
closer to Pareto-optimal or even is Pareto-optimal in the
terms of compression and accuracy. Classical methods are
unable to obtain such good results.

II. THE PROPOSED SOLUTION

A. The starting point: our previous work

In our previous work [28] we analyzed the influence
of population size and crossover scheme on the genetic
algorithms convergence applied to instance selection. Our
general conclusions were that the population size of about
100 individuals and the multi-parent, multi-point repro-
duction scheme, where the number of parents is about
1/10th of the chromosome length were close to optimal
parameters for a broad range of the instance selection
for the datasets from 200 up to 20,000 instances. The



population initialization is an important issue in genetic
algorithms and especially the hybrid methods composed
of more than one initialization scheme are efficient [29].
Thus in the instance selection based on evolutionary
algorithms, our optimization starts from weights randomly
distributed around the instances selected by a classical in-
stance selection method. That allowed to start from a point
corresponding to about 1/3 of the whole optimization.
Next if the k-NN algorithm is used for instance evaluation,
the distances between training and test set instances can
be cashed, not calculated every time. The distances are
sorted and matrices with the classes of the corresponding
training set instances are stored and provided for k-NN if
the for the first kk selected instances. The caching does
not change the number of fitness function evaluations, but
makes calculating the fitness function value much faster.

B. Search space reduction
In this paper we propose two further improvements to

the instance selection with genetic algorithms, which also
can be applied to other optimization problems. The first
proposition is reducing the chromosome length based on
the majority voting at a certain point of the optimization
and the second one is selection of the optimal fitness
function. The purpose of both is to make the optimization
faster. The whole instance selection process is shown in
the pseudocode in Algorithm 1.

It can be observed that because of the decreasing
diversity in the population during the optimization
progresses, there are positions in the chromosome, at
which after some number of iterations there is the
same value (0 or 1) in almost every individual. If
the optimization continues, the positions that take at
this moment the same values in the great majority of
individuals will finally take the majority value with a
very high probability (a prevailing most of them in most
runs of the experiments did). Thus this positions can be
at this moment assigned the majority values and removed
from the further optimization. That will leave us fewer
parameters to optimize and thus the further optimization
will be faster. This is depicted in the example below:

ind1 0010101010101010010
ind2 0001101010101010110
ind3 0111011001111011110
ind4 0010101010101010010
ind5 1010101010101010010
ind6 0001111110011110000
ind7 0010101010101010010
ind8 0011011111101110110
vote 00????1?1???1?10??0

The number in the last row shows the majority position
(in our case the position represented in at least 7 out of
the 8 individuals). If neither 0 nor 1 is present in at least
7 individuals on the same position, then this position is

denoted by a question mark. Thus only the question mark
positions will be further optimized and the chromosome
can be shortened at this moment. This reduces the number
of further iterations as well as the computational complex-
ity of a single iteration (fewer parents and fewer crossover
points have to be generated to produce offspring). Also
the population size can be decreased, because the optimal
population size depends on the chromosome length. There
are two parameters, which we adjusted experimentally:
the iteration at which the reduction is performed and the
voting threshold to eliminate a given position. Even if
it could introduce occasionally some local minimum, it
is not a great concern, because the difference is only in
one or a few instances and there is a little chance that
this affects the classifier. Moreover, this feature can be
switched off, if any possible loss of classification accuracy
is unacceptable.

Algorithm 1 The genetic instance selection
run the ENN followed by IB3 instance selection to get
the set S of selected instances
if Instance Selection then

for i = 0 . . . populationSize do
for v = 0 . . . originalNumV ectors do
initialPopulation[i][v] = 1 with probability
p1 = 0.1 if the instance v is in not S
initialPopulation[i][v] = 0 with probability
p2 = 1− p1 if the instance v is in S

end for
end for

else
generate initial currentPopulation of P individuals

end if
for n = 0 . . . numIterations do

calculate fitness for newPopulation individuals
adjust the fitness function to the standard deviation
apply the multiparent multipoint crossover operation
to generate the newPopulation of N individuals
(N <= P )
if diversity < Threshold and
reducedSEarchSpace = false then

Reduce the search space
reducedSEarchSpace = true

end if
if the best solution is kown to be found then

STOP
end if
sort together currentPopulation and
newPopulation individuals by fitness
select the best P individuals into
currentPopulation
apply the mutation operation

end for



C. Fitness function

As the genetic optimization progresses, the variability
among individuals is getting smaller and thus in order to
promote the best individuals the fitness function should
get steeper. On the other hand too steep fitness function at
the beginning of optimization can cause that only the best
individuals will take part in generating the offspring and
thus the genetic diversity will shortly be very limited with
possibly lacking the good chromosome regions that were
contained in the generally poor individuals. We designed
several different fitness functions, to find out how they
perform and to propose the optimal solutions depending
on the optimization progress.

In equation (1) the expression before raising to the
power p is simply proportional to the accuracy A obtained
on the test set and inversely proportional to the number
if instances V in the training set. The average accuracy
for the population avgA and average number of vectors
avgV only play the role of a normalizing factor. So this
is the most intuitive approach.

fitness =
(
α

A

avgA
+ (1− α)

avgV

V

)p

(1)

In equation (2) the expression in the brackets itself
makes the fitness function steeper, as now the individual
with the minimal accuracy minA has a fitness of zero in
the accuracy part and the individual with the maximum
number of vectors maxV has a fitness of zero in the
vector part.

fitness =
(
α
A−minA

stdA
+ (1− α)

maxV − V

stdV

)p

(2)

Equation (3) presents the strongest selection, as only
the individuals with the quality above the average will
have non-zero fitness. Also other cut-off points, situated
wherever between zero and avgA (eq. 3) can be used.
However, we limited the experiments to the three cases,
because it seemed sufficient for drawing the conclusions.

fitness =
(
α ·max(0, A− avgA

stdA
)

+(1− α) ·max(0, avgV − V

stdV
)
)p

(3)

The exponent p (eq. 4 and 5) can be determined
in various ways and we used two approaches. In both
approaches it consisted of the constant part p1 and the
variable part p2. In particular case p1 or p2 can be set
to zero in eq. (4) and (5). In equation (4) the variable
part increases linearly during the optimization, where i
denotes the current iteration:

p = p1 + p2
i

numIterations
(4)

In eq. (5) the variable part depends on the speed
at which the standard deviation of the weighted sum

of accuracy and the inverse of the number of vectors(
α A

avgA + (1 − α)avgVV

)
decreases, where stdAV (i)

is the standard deviation in the current i − th iteration
and stdAV (i − 1) and stdAV (i − 2) in one and in
two iterations ago. This ensures that the fitness function
steepness is close to proportional to the standard deviation
of the population quality.

p = p1 + p2
0.66 · stdAV (i− 1) + 0.33 · stdAV (i− 2)

stdAV (i)
(5)

In the experiments we evaluated 12 combinations (three
formulas for the base, each with two formulas for the
exponent), each with various p1 and p2 values and each
with two α values (α = 0.96 and α = 0.90) for instance
selection. We also performed the tests for randomly
generated data and in this case the we just used α = 1
and A represented the number of bits which are equal in
the individual and in the target solution.

III. ADVANTAGES AND DISADVANTAGES OF OUR
METHOD

The advantage of our solution is the shorter optimiza-
tion. When the time is a constraint and the problem
is big and we must chose some point of stopping the
optimization, then our method can find a better solution
within the time limit.

The disadvantage of our method is higher complexity
of the algorithm by the application of the chromosome
length reduction, but that is not so complex that it could
be an obstacle in implementing this. There is a very little
chance that some position that should not be removed
from the further optimization will get removed and the
best solution will be missed. In order to minimize the
chance, the selection parameters should be properly tuned.
We cannot see any disadvantage of applying the proposed
fitness function, as the application is very simple and it
is quite stable and small changes in the parameters make
also very small changes to the optimization process.

IV. EXPERIMENTAL RESULTS

We performed the experiments on 10 classification
datasets from the Keel Repository [30]: Ionosphere
(351,33,2), Image Segmentation (210, 18, 7), Magic
(19020, 20, 2), Thyroid (7200, 21, 3), Page-blocks (5472,
10, 5), WDBC (569, 30, 2), Sonar (208, 60, 2), Satellite
Image (6435, 36, 6), Penbased (10992, 16, 10), Pima(768,
8, 2). The numbers in the brackets are (number of
instances, number of features, number of classes). To
perform the experiments we created software that can be
obtained from www.kordos.com/idaacs2017.

The experiments with instance selection were run in
5-fold crossvalidation with two different values of the α
parameter: 0.96 and 0.90 (eq. 1-3). The stopping criterion
was instance reduction rate at the best individual on the



training set slower that 0.2% of the original instances for
three consecutive iterations (the maximum accuracy was
always achieved by that time and after that point over-
fitting starting to occur and the accuracy on test set stated
to drop). The mutation probability was linearly increasing
during the optimization from 0.002 to 0.02 for each
position in each individual, as this was experimentally
determined as close to the optimal probability.

In k-NN used for fitness function determination we
used k = 3 or k = 1 if there were too few instances
to use k = 3. For the final prediction we used two
different classifiers: neural network and k-NN. The MLP
neural network was trained for 30 epochs with the R-prop
algorithm [31]. That was usually the optimal number of
epochs before over-fitting starts to occur. We tried also
some other neural network learning algorithms, but there
was no noticeable difference between the performance
of them, so we decided to use only Rprop for the
experiments. We used networks with one hidden layer.
The numbers of neurons in the hidden layer was set to
the rounded up geometric mean of number of attributes
(inputs) and number of classes (outputs of the network).
We used a population of 96 individuals. This choice was
dictated by the fact that there were 24 physical cores
in our computer and 96 is a multiply of 24 so all the
processing power could be effectively used in parallel
computations.

The precise determination of how many times longer
it took to perform evolutionary than classical instance
selection depends on many implementation details and at
some conditions it can be even faster (for instance DROP
is O(n2)) For example, for the magic dataset calculating
the distance matrix for k-NN took as many times as 2000
evaluations of the fitness function with reading the classes
from the sorted arrays (this is about 21 epochs). However,
the CPU utilization while calculating distance matrices
was 100% and while calculating the fitness functions
below 30% due to thread synchronization issues. That
however likely can be improved with better implementa-
tion. The computational complexity of ENN+IB3 is of the
order of O(n2) - the same as calculating k-NN distances,
where n is the number of instances. There also exist some
methods of increasing k-NN speed (at the cost of possible
precision loss), that were not used in this work.

We experimentally determined that the chromosome
length reduction should take place when at least at 60%
of positions, the majority vote ir at least 95% that is of 91
the same votes for the population size of 96 individuals. In
case of instance selection it allowed for an average 3-fold
chromosome length reduction because of the data sparsity
(that is only a few instances need to be selected and
there should be zeros on prevailing number of positions),
especially for bigger datasets and it allowed to shorten the
total optimization time by about 25% - 35% depending
on the dataset size.

dataset α cI cA agI agA nf
0.96 15.2 84.4 13.5 86.8 2980

Ionosph 0.90 13.5 86.8 ±220
0.96 13.8 91.0 13.8 91.6 2870

ImSegm 0.90 13.7 91.5 ±120
0.96 3.91 82.5 2.65 84.5 13200

Magic 0.90 1.97 83.3 ±2300
0.96 2.87 93.0 1.80 96.8 12200

Thyroid 0.90 1.32 96.1 ±1100
0.96 2.29 93.6 1.83 96.6 23900

PageBlk 0.90 0.98 96.3 ±1700
0.96 12.0 97.0 9.43 97.7 3470

WDBC 0.90 6.66 97.1 ±80
0.96 27.6 80.2 15.6 82.7 2100

Sonar 0.90 11.3 82.1 ±10
0.96 7.47 82.6 4.67 82.5 14800

SatImg 0.90 2.12 68.2 ±1200
0.96 3.60 90.3 3.20 91.3 11400

Penbas 0.90 3.25 88.2 ±900
0.96 6.76 95.3 3.56 97.8 3890

Pima 0.90 3.56 97.8 ±200

Table I. EXPERIMENTAL RESULTS WITH INSTANCE SELECTION, CI,
AGI - PERCENTAGE OF SELECTED INSTANCES BY ENN+IB3 AND

EVOLUTIONARY METHOD RESPECTIVELY, CA, AGA -
CLASSIFICATION ACCURACY OF MLP NETWORK TRAINED ON THIS

SELECTION, NF - NUMBER OF FITNESS FUNCTION EVALUATIONS.

Figure 1. How the number of fitness function evaluation on
vertical axis for 100 (red) and 1000 (blue) chromosome

length) depends on the exponents (eq. 4, 5) of the fitness
function for different functions (the numbers, e.g 2-4 show the

number of equations with the function formula: first
number:accuracy, second:exponent).

As it can be seen from Fig. 1., the best fitness function
is given by eq. 2 and the exponent p by equation 4. For
longer chromosomes higher exponents are better than for
shorter. However, too high exponents are not stable and
the process may not converge at all. For that reasons the
lines 2-4 (in Fig. 1.) are not shown further to the right as
it was already in the unstable area.

V. CONCLUSIONS

There are several factors, which influence the speed
of convergence of genetic optimization. In this work we
discussed two ways to accelerate the instance selection
with genetic algorithms: optimized fitness function and



chromosome size reduction, which allowed us to sig-
nificantly accelerate the process. The accuracy shown
in Table 1 is the same as we obtained in our previous
work, but the optimization time is on average cut by half
(more for larger datasets due to stronger chromosome size
reduction).

In the future work we are going to extend the research
by: including joint instance and feature selection as well
for classification as for regression tasks. The results of
our research with joint instance and feature selection
with classical (non evolutionary) methods showed, that
not simultaneous, but sequential feature and then instance
selection was the best option [32], so it is not so obvious
at this moment how the problem should be optimally ap-
proached with evolutionary optimization. Our preliminary
research with regression tasks showed that in this case
it is a good idea to apply not only instance selection
but also instance weighting, so in case of evolutionary
optimization, the chromosome should contain not binary,
but real or at least discrete multi-valued positions. And
finally the last topic is a thorough study of setting all
the parameters of evolutionary instance selection together
and their dependence on each other and on the properties
of the depicted task, as the length of the chromosome
and the possible sparsity of the data in case of instance
(or instance and feature) selection for big datasets in
classification tasks.
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